REFERENCES

- D. W. Stuart and T. H. R. O'Neill, "The Over-Relaxation Factor in the Numerical Solution of the Omega Equation," Monthly Weather Review, vol. 95, No. 5, May 1967, pp. 303-307.
- K. Miyakoda, "Test of Convergence Speed of Iterative Methods for Solving 2 and 3 Dimensional Elliptic-Type Differential Equations," Journal of the Meteorological Society of Japan, Ser. II, vol. 38, No. 2, Apr. 1960, pp. 107-124.

[Received February 5, 1968]

Reply

DAVID W. STUART

Florida State University, Tallahassee, Fla.

Capt. O'Neill and I are indebted to Mr. Yamagishi for his above comments pointing out the error in our paper [3]. Indeed the α_{opt} values from the theory as given in table 1 of his note should replace those given in table 3 of our paper. I must accept the responsibility for this error. After receiving Mr. Yamagishi's correspondence I traced this error to the use of an incorrect value of f_0^2 in the expression for K_{tjp} .

As pointed out by Yamagishi and as seen in his table 1, it appears that our observed α_{opt} values agree well with the theory as developed by Miyakoda [1] even for the three-dimensional (3-D) case. However, some caution must be exerted here. Miyakoda's analysis is developed for K_{ijp} constant and in the cases considered by Stuart and O'Neill [3] (i.e., the quasi-geostrophic omega equation) K_{ijp} varies with pressure due to the variation of static stability $(\sigma = -(\alpha/\theta)\partial\theta/\partial p)$. Focusing only on the 2° grid case with $N_x=N_y=18$, $N_p=6$ and using σ for the standard atmosphere, the correct α_{opt} via the theory is: $\alpha_{opt} = 0.237$ for $\sigma = 1.178$ MTS units (at 800 mb.), $\alpha_{opt} =$ 0.306 for σ =2.0 MTS units (at 600 mb.), α_{opt} =0.352 for $\sigma=4.0$ MTS units (at 440 mb.) and $\alpha_{opt}=0.414$ for σ =44 MTS units (at 200 mb.). Table 3 of Stuart and O'Neill [3] shows this case to have an observed $\alpha_{opt} = 0.320$ with a sharp cutoff near $\alpha = 0.350$. Hence, for the relaxation scheme used by Stuart and O'Neill for the solution of the 3-D omega equation a choice of $\sigma > 4$ MTS units would have yielded an α_{opt} that led to nonconvergence. In this case the choice of the appropriate σ probably is not too difficult since only one level-200 mb.-had a very high σ and the tropospheric σ could be easily argued to be the most appropriate to yield a theoretical α_{opt} quite close to the observed α_{opt} . Actually the observed α_{opt} falls in the range of Miyakoda's theoretical α_{opt} corresponding to the range of σ but with a weighting toward the lower α 's since more levels have lower σ 's.

In an earlier correspondence (Stuart [2]), I reported on the extension of the model for the 2° grid case to $N_p=11$ (i.e. $\Delta p = 10$ cb.) yet with $N_x = N_y = 18$ as before. Miyakoda's theory gives the following values for the optimum over-relaxation factor: α_{opt} =0.128 for σ =0.944 MTS units, α_{opt} =0.202 for σ =2.0 MTS units, α_{opt} =0.272 for $\sigma = 4.0$ MTS units, and $\alpha_{opt} = 0.418$ for $\sigma = 206$ MTS units. (The first and last values correspond to σ at 900 and 100 mb. in the standard atmosphere.) In the actual solution of the omega equation, σ for the standard atmosphere was employed at all levels yielding an observed α_{opt} =0.15 with a sharp cutoff near σ =0.20. Again we see that α_{opt} calculated via Miyakoda's theory has a wide variation depending on the σ value but our relaxation scheme yields an observed α_{opt} well within this variation and heavily weighted toward the lower (tropospheric) σ values. Note that nonconvergence would have occurred if we used an α_{opt} based on $\sigma > 2$ MTS units.

The above comments and the observed results presented by Stuart and O'Neill [3] suggest some changes in our earlier conclusions concerning the α_{opt} value of the 3-D omega equation. Our observed optimum over-relaxation factors agree better with the limited theory than first thought and we now must definitely conclude that Miyakoda's [1] limited analysis is quite useful for selecting the range of α_{opt} for the 3-D omega equation. Since Miyakoda's theory shows α_{opt} to be quite sensitive to the stability factor, σ , in the 3-D omega equation, it is suggested to choose α_{opt} on the low side of the range of Miyakoda's theoretical α_{opt} values as determined using the range of σ appropriate to the problem. For some σ values the α_{opt} as determined by Miyakoda's analysis may lead to nonconvergence when employed in the quasigeostrophic omega equation. Finally, the observed sharp cutoff for α just larger than α_{opt} is still an important feature of our observed α curves.

REFERENCES

- 1. K. Miyakoda, "Test of Convergence Speed of Iterative Methods for Solving 2 and 3 Dimensional Elliptic-Type Differential Equations," Journal of the Meteorological Society of Japan, Ser. 2, vol. 38, No. 2, Apr. 1960, pp. 107-124.
- D. W. Stuart, "Reply" [to Correspondence by James J. O'Brien], Monthly Weather Review, vol. 96, No. 2, Feb. 1968, p. 104.
- D. W. Stuart and T. H. R. O'Neill, "The Over-Relaxation Factor in the Numerical Solution of the Omega Equation," Monthly Weather Review, vol. 95, No. 5, May 1967, pp. 303-307.

[Received February 28, 1968]